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GEOMETRIC PROOFS OF THE IRRATIONALITY OF SQUARE-ROOTS

FOR SELECT INTEGERS

ZONGYUN CHEN, STEVEN J. MILLER, CHENGHAN WU

1. Introduction

The positive integers 1, 2, 3, . . . are not surprisingly one of the most important sequences in
mathematics, and typically the first encountered. Quickly one meets interesting sub-sequences,
such as the primes (2, 3, 5, 7, 11, . . . ), the perfect squares (1, 4, 9, 16, 25, . . . ) and the Fibonacci
numbers (1, 2, 3, 5, 8, . . . ) to name just a few. These are well studied and arise in numerous
places; see the On-line Encyclopedia of Integer Sequences [OEIS] for details and properties of
these and others.

Almost all integers have irrational square-roots, with the percent of n ≤ x with
√
n 6∈ Q

approximately 100 · x−1/2%. The standard proof uses the property that if a prime p divides a
product xy then p|x or p|y or both (see for example [MS] for a proof) and the Fundamental
Theorem of Arithmetic (every integer can be written uniquely as a product of primes in
increasing order; see [HW]).

Assume a non-square n > 1 has a rational square-root; thus we can write
√
n =

a/b ∈ Q with a, b relatively prime integers and without loss of generality it
suffices to consider n that are square-free, as if n = m1m

2
2 then

√
n =

√
m1 ·m2.

Then nb2 = a2. As n > 1 is square-free, there is a prime p that divides n. Thus
p|a2 so p|a and we can write a as αp. Substituting yields nb2 = α2p2; as n is
square-free and a multiple of p, we must have n/p is an integer relatively prime
to p and thus p|b2. A similar argument now shows b = βp, contradicting a and
b are relatively prime and therefore

√
n is irrational.

There’s a lot of interesting history on this proof; if we don’t use the property that if a prime
divides a product then it divides at least one factor, we can mimic the above argument, but
only by essentially reproving the result case by case. For example, if n = 2 then we would
have 2b2 = a2. If a = 2α + 1 is odd then a2 = 4α2 + 4α + 1 is odd, and thus cannot be a
multiple of 2, and thus a = 2α. Similarly if n = 3 we would have 3b2 = a2 and 3 must divide
the right hand side as it divides the left. We can write a = 3α+ r with r ∈ {0, 1, 2} and note

a2 = 9α2 + 6αr + r2 = 3(3α2 + 2αr) + r2,

which is only a multiple of 3 when r = 0 as 12 = 1 and 22 = 4 are not multiples of 3. Do
we need the fact that if a prime divides a product it divides at least one factor? It turns out
we can verify enough of this property for any specific prime, in particular we can show if p
divides a number of the form mp+ r for 0 ≤ r < p then r must be zero; doing so just requires
showing r2 is not a multiple of p for 1 ≤ r ≤ p−1. Unfortunately we seem to need the product
property to argue generally.

This paper is an outgrowth of a talk given by the second named author and attended by the other authors at
the Math League International Summer Tournament in Summer 2024 in Trenton, NJ. It is a pleasure to thank
the organizers and participants for creating such a lively atmosphere, especially Dan Flegler, John Hagen, Rui
Hu, and Adam Raichel.
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We thus know that the elements of I := {2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, . . . } have
irrational square-roots, provable using the above methods. What if we wish to avoid using a
prime dividing a product divides at least one factor? Which elements in I can be proved to
have irrational square-roots using geometric methods? To be fair Euclid proved in Book VII
of his classic Elements the result that if p|xy then p|x or p|y, using of course different language
than we use today;1 thus by geometric argument we mean using areas of figures.

A classical geometric proof for the irrationality of
√
2 was introduced by Stanley Tennen-

baum [Te] in the 1950s and later popularized by John H. Conway in his article The Power of

Mathematics [Co]. For completeness we quickly review their proof, paraphrasing from [MM1].

Suppose that (a/b)2 = 2 for integers a and b; we may assume a and b are
the smallest such numbers. Thus a2 = 2b2, which we interpret geometrically
as the area of two squares of side length b that equals the area of one square
of side length a. Thus, if we consider Figure 1, the total area covered by

b

a-b

ba-b

2b-a

Figure 1. Geometric proof of the irrationality of
√
2.

the squares with side length b (double counting the overlapping, pink region)
equals the area of the larger square with side length a. Therefore the pink,
doubly counted part, which is a square of side length 2b− a, has area equal to
that of the two white, uncovered squares (each of side length a− b). Therefore
(2b − a)2 = 2(a − b)2 or

√
2 = (2b − a)/(a − b). We now show this implies we

have
√
2 equal to the ratio of two smaller integers, a contradiction completing

the proof. Clearly 2b − a > 0, as if not we would have 2b ≤ a and thus
4b2 ≤ a2 = 2b2. For the upper bound, note 2b− a < a, as otherwise 2b− a ≥ a
implying b ≥ a, which implies

√
2 ≤ 1. Thus

√
2 6∈ Q.

Since then, several other geometric proofs have been devised for
√
2. Notable examples

include the proof by Tom Apostol, based on similar right triangles [Ap, Bo] and another by
Grant Cairns, which involves a different construction using squares [Ca, Bo]. (The geometric
proof of the irrationality of

√
8 can be derived from that of

√
2, as

√
8 is simply twice

√
2.) By

extending this method, Steven J. Miller and David Montague [MM1, MM2] provided geometric

1From the Wikipedia entry on the Fundamental theorem of arithmetic [Wi]: If two numbers by multiplying

one another make some number, and any prime number measure the product, it will also measure one of the

original numbers.
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proofs for the irrationality of
√
5 and certain triangular numbers2 such as

√
3,

√
6, and

√
10.

Inspired by their work, Ricardo A. Podestá gave a geometric proof for
√
7 in [Po] using a

distinct construction.
We have two goals: to draw attention to these geometric arguments, and to show how far

one can push these ideas. The genesis for this paper was a talk given by the second named
author at the Math League International Summer Tournament in Summer 2024, where he
described these proofs and posed three challenge problems: modify Tennenbaum’s construction
to prove the irrationality of

√
7, of 3

√
2, or

√
6 using hexagons (the proofs by Tennenbaum and

Miller-Montague use regular n-gons for
√
n with n ∈ {2, 3, 5} but equilateral triangles for

n ∈ {6, 10}). We3 show that a regular n-gon argument using hexagons works for n = 6, and
discuss explicitly the limitations in the equilateral triangle method; though we are able to use
their ideas to geometrically prove

√
15 6∈ Q, we know their approach must eventually break

down for triangular numbers as T8 = 36 is a perfect square! This places us in an interesting
position that we know the method works for small n but must eventually break down! We
invite the reader to try and find geometric proofs for the irrationality of square-roots of other
elements of I, and to let us and the journal know if successful!

2. Geometric proof of the irrationality of
√
6 using hexagons

To prove that
√
6 is irrational, first suppose

√
6 is rational and can be expressed as a

fraction a/b, where a and b are the smallest possible natural numbers satisfying this relation;

obviously they are relatively prime or we would have smaller numbers. Then we get (a/b)2 = 6
(or a2 = 6b2). We interpret a2 = 6b2 geometrically as the area of a large hexagon of length a
that equals six times the area of a hexagon of length b. We place six regular hexagons of side
length b at the corners of a larger regular hexagon with side length a (see Figure 2).

We need to determine the lengths of the sides of the small white and shaded triangles; we
clearly label all quantities in Figure 3 to facilitate the discussion.

First, consider the smallest white triangle ∆CDE at the bottom. Its two lower internal
angles are both π/3 as they are supplementary angles to the angle of a regular hexagon
(2π/3), forcing the top angle to be π/3. So, ∆CDE is an equilateral triangle. Next, the large
white star in the middle is divided into 12 triangles, as shown in 3. The 12 smallest white
triangles which are each adjacent to an orange diamond are all congruent equilateral triangles
by symmetry. This arrangement leaves the hexagon in the center (see the six triangles in
the middle of the right image in Figure 3) as a regular hexagon composed of six equilateral
triangles. Consequently, all 18 of the small white triangles are congruent.

Now divide each overlapping orange diamond into two triangles. In ∆ABC. The measure
of angle ACB is 60 degrees: m∠ACB = π/3 (for ∠ACB and ∠DCE are vertical angles)
and AC = CB (by symmetry). Thus, ∆ABC is an equilateral triangle. Additionally, the 12
orange equilateral triangles are congruent by symmetry.

2The nth triangular number, Tn, is 1 + 2 + · · ·+ n, and equals n(n+ 1)/2.
3The first and third named authors were students at the talk, who sent in correct solutions to the third

problem and collaborated with each other and the second named author on the other items in the paper. After
a draft was written, similar solutions to the third problem were also received by other members of the audience:
Cindy Gu (who also provided a nice proof of the irrationality of

√
7, though not by areas, Ningze Song and

Roy Sun.
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Figure 2. Geometric proof of the irrationality of
√
6

Figure 3. Geometric proof of the irrationality of
√
6: equilateral triangles

The area of the orange double-counted triangles is equal to the area of the white triangles:

12×Area (orange equilateral triangle) = 18×Area (white equilateral triangle)

6×Area (orange equilateral triangle) = 9×Area (white equilateral triangle)

Area (white equilateral triangle)

Area (orange equilateral triangle)
=

6

9
.
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As the area of an equilateral triangle is proportional to the square of its side length (we

don’t need this proportionality constant, but it equals
√
3/4), the above relation translates to

one about side lengths. Note

Side Length (white equilateral triangle)

Side Length (orange equilateral triangle)
=

a− 2b

b− (a− 2b)
=

a− 2b

3b− a

and therefore

(a− 2b)2

(3b− a)2
=

6

9

a− 2b

3b− a
=

√
6

3
3a− 6b

3b− a
=

√
6.

Clearly, 3a−6b and 3b−a are both integers and it’s straightforward to show each is positive.4

Since 2 <
√
6 < 3 and b = a/

√
6 we have

3a− 6b = 3a− 6a√
6

= 3a−
√
6a = (3−

√
6)a < a.

Also using a =
√
6b we find

3b− a = 3b−
√
6b = (3−

√
6)b < b.

We’ve found a pair of positive integers, 3a − 6b and 3b − a, that are smaller than a and b
respectively, with the same ratio of

√
6. This leads to a contradiction and thus

√
6 is irrational.

3. Generalizing Geometric Triangle Irrationality Arguments

Let’s now see how far we can push these geometric arguments. While we know that
√
n is

irrational whenever n is square-free, extending the above method becomes difficult. We invite
anyone who can make the regular n-gon argument work for additional n to contact us, as we
would love to see the answer, but warn you that it is probably hard in general.5 We thus
return to the idea introduced by Miller and Montague and look at using multiple equilateral
triangles for the triangular numbers, where as always Tn = n(n+ 1)/2.

To prove
√

n(n+ 1)/2 is irrational, suppose it’s rational and thus can be expressed as a

fraction a/b, where a and b are the smallest positive integers that work.6 Thus
(a

b

)2
=

n(n+ 1)

2
or a2 =

n(n+ 1)

2
b2.

Similar to our earlier arguments, we interpret a2/b2 = n(n + 1)/2 geometrically as the ratio
of the area of two equilateral triangles. Thus, we arrange n equally spaced rows of triangles,
each with side length b, resulting in a total of n(n+1)/2 triangles inside a larger triangle with
side length a. In Figure 4, four examples of these arrangements are shown for n = 2, 3, 4,
and 5.

4For example, if 3b− a ≤ 0 then 3 ≤ a/b implying 9 ≤ a2/b2 = 6, a contradiction.
5Perhaps if we have a proof that works for

√
n we can also do

√
2kn for any k, or maybe if

√
n1n2 if we can

do for each ni and they are relatively prime; we encourage the interested reader to try one of these cases first
before hitting the wall, as so many of us have done, with

√
7.

6It’s not possible that one fraction has the smallest denominator and another the smallest numerator. If
a1/b1 = a2/b2 but a1 > a2 while b1 ≤ b2 then clearly the first fraction exceeds the second.
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Figure 4. The proof of the irrationality of
√

n(n+ 1)/2 when n is 2, 3, 4, and 5.

To arrange n rows of triangles with side length b with row k having k triangles, we start
with the largest triangle with side length a and place a triangle with side length b at the top
vertex. Next, we place n − 1 triangles with side length b down to the bottom-left vertex and
another n − 1 to the bottom-right (as shown in Figure 5). We must be careful in how we
do this so that every overlapped triangle is equivalent to every other. By simple continuity
arguments we can show this can be done, and give a formula for how far we must move. We
start with all n triangles at the top vertex and slide down the left side (and then we mirror
this and slide down the right side), moving down a distance b − t and then placing the next
triangle, and then moving down another b − t units and placing the next triangle, until we
have moved b− t units n− 1 times and place the final triangle, whose left vertex is now at the
left vertex of the triangle of length a. Note t is the length of the small equilateral triangles,
and each triangle starts b− t units down from the previous. As the final triangle of side length
b starts (n− 1)(b− t) units down from the vertex and the side of the original triangle is a we
must have

a = (n − 1)(b − t) + b or t =
nb− a

n− 1
.

We can conclude that the smallest doubly-covered triangles formed along the legs of the
largest equilateral triangle with side length a are all congruent, as two of their three interior
angles correspond to those of an equilateral triangle with side length b, forcing the third to
be π/3, and all the triangles with side length b are equidistant. Let the side length of the
doubly-covered triangles along the legs of the largest triangle be t. We carefully (perhaps too
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carefully!) show that all the other doubly and triply counted smaller triangles are equilateral
triangles with the same side lengths.

Figure 5. Proof of congruence for all doubly-covered and triply-covered
triangles: triangles on the outside

First, let us examine the top two rows of triangles with side length b. Let the side length
of the overlapping triangle in the middle of the second row at the bottom be t2 (as shown in
Figure 6). The boundary of the left and right sides has a length of 2b− t (two triangles with
side length b subtracting the overlap). The boundary on the bottom has length 2b − t2 (two
triangles with side length b subtracting the overlap). The boundary of the top two rows of
triangles with side length b is an equilateral triangle since each of its interior angles correspond
to those of an equilateral triangle with side length b, meaning 2b − t = 2b − t2. Therefore,
t = t2.

Figure 6. Proof of congruence for all doubly-covered and triply-covered
triangles: first two rows

Next, we place a triangle with side length b in the middle of the third row, forming an
equilateral triangle as the boundary and adding two more congruent doubly-covered equilateral
triangles with side length t3 on the bottom of the third row (as shown in Figure 7). The
boundary of the left and right sides has length 3b − 2t (three triangles with side length b
subtracting the two overlaps). The boundary on the bottom has length 3b−2t3 (three triangles
with side length b subtracting the two overlaps). Since 3b− 2t = 3b− 2t3, we get t = t3.

We continue this process until n rows of triangles of side length b are arranged within the
largest triangle, resulting in multiply-covered equilateral triangles with side length t2, t3, . . . , tn

MONTH YEAR 7
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Figure 7. Proof of congruence for all doubly-covered and triply-covered
triangles: first three rows

Figure 8. Proof of congruence for all doubly-covered and triply-covered triangles

in rows 2, 3, . . . , n respectively (as shown in Figure 8). The same argument shows each ti
equals t, and thus all the triangles are equilateral with the same side length.

Recall t = (nb − a)/(n − 1). We need to figure out how many doubly and triply counted
equilateral triangles of side length t there are, as well as how many triangles are missed (the
blank or white triangles) and what their size is. The blank triangles are congruent equilateral
triangles since each of their angles is a vertical angle to an interior angle of a multiply covered
equilateral triangle and each side of these blank triangles has a length of s = b− 2t (a triangle
with side length b subtracting two overlapping segments at each end of the side). Then, we
have

s = b− 2t = b− 2 · nb− a

n− 1
=

2a− (n + 1)b

n− 1
.

The doubly-covered triangles with side length t are the ones on the outside of the original
triangle; there are 3(n− 1), because on each side there are n− 1 doubly-covered triangles. All
interior small triangles are triply-covered with side length t. The number of such is 1 + 2 +
· · ·+ (n− 2) = (n− 2)(n− 1)/2; note we have n− 1 rows and k such triangles in row k (when
n = 2 there are no triply-counted triangles). What do these triangles contribute to the doubly
and triply counted area? The doubly counted triangles contribute their area and the triply
counted ones contribute twice their area (we are looking at the excess coverage, thus one copy
of each is needed to get the area of the original triangle of side length a, and the area of the
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extra copies equals the area of the blank triangles). Thus the area they contribute
√
3

4

[

3(n − 1) + 2
(n− 2)(n − 1)

2

]

t2 =

√
3

4
(n2 − 1)t2 =

√
3

4
(n− 1)(n + 1)t2.

What of the blank triangles? Their area must equal the above. The number of these
uncovered triangles with side length s is 1 + 2 + · · · + (n − 1) = (n − 1)n/2, since, similar to
the triply counted triangles, they form a triangular configuration with n − 1 rows. Thus the

area of the blank triangles is
√
3
4

(n−1)n
2 s2, and setting the two areas equal to each other (and

dividing by the scaling factor
√
3/4 yields

(n− 1)(n + 1) · t2 =
(n− 1)n

2
· s2.

We substitute t = (nb− a)/(n − 1) and s = [2a− (n + 1)b]/(n − 1) and find

(n− 1)(n + 1) ·
(

nb− a

n− 1

)2

=
n(n− 1)

2
·
(

2a− (n+ 1)b

n− 1

)2

,

which by multiplying by n− 1 (which we can as n > 1) is equivalent to

(n + 1) · (nb− a)2 =
n

2
· [2a− (n+ 1)b]2. (3.1)

We now investigate for what n is this solvable. Remember to prove
√
Tn is irrational we are

trying to find a smaller solution to
√
Tn than a/b; this cannot be possible for all n as T8 = 36

has an integer square-root.

Case 1: n is even.

Since n is even, n/2 is an integer. We multiply both sides of (3.1) by n/2 to achieve a
smaller solution to a2 = n(n+ 1)/2 · b2. Thus we have

n(n+ 1) · (nb− a)2

2
=
(n

2

)2
· [2a− (n+ 1)b]2,

we now divide both sides by (nb− a)2 to get

n2 · [2a− (n+ 1)b]2

4(nb− a)2
=

n(n+ 1)

2
,

and then taking square-roots yields

n · [2a− (n+ 1)b]

2(nb− a)
=

√

n(n+ 1)

2
,

and finally since n is even we can move the 2 in the denominator to the numerator:

n/2 · [2a− (n+ 1)b]

nb− a
=

√

n(n+ 1)

2
.

Since n/2 is an integer, n/2 · [2a − (n + 1)b] and nb − a are both integers. Thus to get a
contradiction, all we need is the new side b′ = nb − a to be less than b. That is, we need to
find all even n with nb− a < b.

As a =
√

n(n+ 1)/2 · b, such n must satisfy

nb−
√

n(n+ 1)

2
· b =

(

n−
√

n(n+ 1)

2

)

· b < 1 · b,

MONTH YEAR 9
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which is equivalent to

n−
√

n(n+ 1)

2
< 1.

Solving the inequality yields

n <

√
17 + 5

2
≈ 4.56,

which is satisfied only for n = 2 and n = 4 (recall n is even). Thus, interestingly, even though
T6 = 21 has an irrational square-root, this argument breaks down and again we encourage any
interested readers who pursue this to reach out to us.

Case 2: n is odd.

We multiply both sides of (3.1) by n+1 to achieve a smaller solution to a2 = n(n+1)/2·b2,
giving us

(n+ 1)2 · (nb− a)2 =
n(n+ 1)

2
· [2a− (n+ 1)b]2.

Dividing both sides by [2a− (n+ 1)b]2 and taking square-roots yields

(n+ 1) · (nb− a)

2a− (n+ 1)b
=

√

n(n+ 1)

2
.

Similar to the case when n was even, we have to group terms appropriately. We pull out a
2 from the denominator and move it to the numerator and have it dividing n + 1, as n odd
implies n+ 1 is even and thus (n+ 1)/2 is an integer. We thus have

n+1
2 (nb− a)

a− n+1
2 b

=

√

n(n+ 1)

2
,

with n+1
2 (nb− a) and a− n+1

2 b both integers.

To get a contradiction, we need the new side b′ = a− n(n+1)
2 b to be less than b. That is, for

what odd n is a− n+1
2 b < b? We substitute a =

√

n(n+ 1)/2 · b and find

a− (n+ 1)

2
b =

√

n(n+ 1)

2
b− (n+ 1)

2
b =

(
√

n(n+ 1)

2
− (n+ 1)

2

)

· b < 1 · b,

which is equivalent to
√

n(n+ 1)

2
− (n+ 1)

2
< 1.

Solving the inequality yields

n <
√
13 + 2 ≈ 5.61,

and thus the argument works for odd n of 3 and 5 but no greater.

In conclusion, our geometric method of using equilateral triangles proves the irrationality
of the square-root of the triangular numbers7 Tn = n(n + 1)/2 for n ∈ {2, 3, 4, 5} and can be

shown to be inapplicable for larger n. In particular,
√
3,
√
6,
√
10 and

√
15 are all irrational. As

remarked many times, it’s not unexpected that these triangle games must have an obstruction
at some point, since there exist infinitely many triangular numbers that are perfect squares;
we invite the reader to try these constructions for n = 6 or 7 to see what goes wrong.

7The ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES [OEIS] is a great resource to gain more
information on a sequence of triangular numbers that are perfect squares; see https://oeis.org/A001108.
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