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PART I:
Pascal’s Triangle



Goal of the Talk

We will go from Algebra to one of the two main parts of calculus:
differentiation.

Differentiation is all about how functions change.

We will review functions, discuss limits, find derivatives, and see a
wonderful application: Newton’s Method to numerically approximate
3. We will then extend to other roots, and see chaos and fractals.
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Pascal’s Triangle

The numbers in the nth row of 
Pascal’s Triangle are the 
coefficients we obtain in 
expanding (x+y)n.

Equivalently, we have two 
diagonals of 1, and all other 
elements are the sum of the 
elements in the row above 
immediately to the left and 
immediately to the right.
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

It provides a framework to multiply (a+b) and (c+d).

We have:

(a + b) * (c + d) = a * c   +   a * d   +   b * c  +  b * d. 

FIRST        OUTSIDE         INSIDE        LAST
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

It provides a framework to multiply (a+b) and (c+d).

We have:

(a + b) * (c + d) = a * c  + a * d + b * c + b * d. 

Thus:

(3 + 5) * (7-2)  = 3 * 7 + 3 * (-2) + 5 * 7 + 5 * (-2) = 21 – 6 + 35 – 10 = 40 (which is 8 * 5). 

(x + y) * (x – y)  =  x * x + x * (-y) + y * x + y * (-y)  =  x2 – x y + y x – y2  =  x2 – y2.

(x + y) * (x + y)  =  x * x + x * y + y * x + y * y  =  x2 + x y + y x + y2  =  x2 + 2 x y + y2.
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

We can repeatedly apply it, and its generalizations…..

We have:

(x + y)2 =  (x + y) * (x + y)  =  x * x + x * y + y * x + y * y  =  x2 + x y + y x + y2  =  x2 + 2 x y + y2.

So:

(x + y)3 = (x + y) * (x + y)2 = (x + y) * (x2 + 2 x y + y2)

= x * (x2 + 2 x y + y2) + y * (x2 + 2 x y + y2)

= (x3 + 2 x2 y + x y2) + (x2 y + 2 x y2 + y3)

= x3 + 3 x2 y + 3 x y2 + y3.
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FOIL
FOIL stands for FIRST, OUTSIDE, INSIDE and LAST.

We can repeatedly apply it, and its generalizations…..

We have:

(x + y)2 =  (x + y) * (x + y)  =  x * x + x * y + y * x + y * y  =  x2 + x y + y x + y2  = 1 x2 + 2 x y + 1 y2.

So:

(x + y)3 = (x + y) * (x + y)2 = (x + y) * (x2 + 2 x y + y2)

= x * (x2 + 2 x y + y2) + y * (x2 + 2 x y + y2)

= (x3 + 2 x2 y + x y2) + (x2 y + 2 x y2 + y3)

= 1 x3 + 3 x2 y + 3 x y2 + 1 y3.
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Expanding (x + y)n

(x + y)1 =  1 x + 1 y

(x + y)2 = 1 x2 + 2 x y + 1 y2.

(x + y)3 = 1 x3 + 3 x2 y + 3 x y2 + 1 y3.

This is the start of Pascal’s Triangle…..

How should we define (x + y)0? Well, we often say things to to zeroth power are 1, so we 
extend to….
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Expanding (x + y)n

(x + y)0 =  1

(x + y)1 =  1 x + 1 y

(x + y)2 = 1 x2 + 2 x y + 1 y2.

(x + y)3 = 1 x3 + 3 x2 y + 3 x y2 + 1 y3.

This is the start of Pascal’s Triangle…..

We re-write it in triangular form…. 
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Expanding (x + y)n

(x + y)0 =  1

(x + y)1 =  1 x + 1 y

(x + y)2 = 1 x2 + 2 x y + 1 y2.

(x + y)3 = 1 x3 + 3 x2 y + 3 x y2 + 1 y3.

We can keep going and get more and 
more rows…..
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Why is the Pascal Relation true? Each number is the sum of what is immediately above to the right and to the left.
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Sketch of the proof:

Assume we know one row, say
(x+y)5 = x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5.

Then
(x+y)6 =  (x+y) (x+y)5

=  x (x+y)5 + y (x+y)5

= x (x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5) + y (x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5)

= (x6 + 5 x5 y + 10 x4 y2 + 10 x3 y3 + 5 x2 y4 + x y5) + (x5 y + 5 x4 y2 + 10 x3 y3 + 10 x2 y4 + 5 x y5 + y6)

=     x6 + 5 x5 y + 10 x4 y2 + 10 x3 y3  +   5 x2 y4 +    x y5

+   x5 y +  5 x4 y2 + 10 x3 y3  + 10 x2 y4  + 5 x y5 + y6 

=     x6 + (5+1) x5 y + (10+5) x4 y2 + (10+10) x3 y3  +  (5+10) x2 y4 + (1+5) x y5 + y6

=     x6 + 6 x5 y + 15 x4 y2 + 20 x3 y3  +  15 x2 y4 + 6 x y5 + y6



Pascal’s Triangle

While we can prove many properties of the coefficients of Pascal’s 
triangle, for small n we can just expand directly.
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Pascal’s Triangle
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Pascal’s Triangle
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Pascal’s Triangle

17

https://www.youtube.com/watch?v=tt4_4YajqRM (start 1:35)
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PART II:
Algebra and Limits



Evaluating Functions 

A function takes an input and sends it to an output.

We often use the letter  f  to denote the function, and put the input in 
parentheses. 

A linear function is of the form f(x) = a x + b for fixed constants a and b.

For example: f(x) = 3x – 5 or f(x) = 7x + 2  or f(x) = 4x + 17.
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Evaluating Functions 

For example: f(x) = 3x – 5. Let’s evaluate it at a few choices of x.

We have:

f(0) = 3 * 0 – 5 = -5

f(1) = 3 * 1 – 5 = -2

f(2) = 3 * 2 – 5 = 1

f(3) = 3 * 3 – 5 = 4

f(4) = 3 * 4 – 5 = 7
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Quadratic Functions 

Quadratic functions of the form f(x) = ax2 + bx + c for constants a, b, c.

Consider f(x) = 2 x2 – 3 x + 4.

We have:

f(0) = 2 * 02 – 3 * 0 + 4 =   4

f(1) = 2 * 12 – 3 * 1 + 4 =   3

f(2) = 2 * 22 – 3 * 2 + 4 =   6

f(3) = 2 * 32 – 3 * 3 + 4 = 13

f(4) = 2 * 42 – 3 * 4 + 4 = 24
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Polynomials

More generally can look at a polynomial of degree n: have constants an, 

an-1, …, a1, a0 so that f(x) = an x
n + an-1 x

n-1 +     + a1 x + a0.

Here is a plot of 

f(x) = x (linear)

g(x) = x2 (quadratic)

h(x) = x3 (cubic)

for x between 0 and 1.5. 
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Limits
One of the most important concepts in calculus is that of a limit.

We want to know what happens to the output of a function as the 
inputs approach a specific value.

For polynomials the limit is easy. If f(x) = 3 x + 5, what is the limit of f(x) 
as x approaches 2? It would just be limx→ 2 f(x) =
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Limits
One of the most important concepts in calculus is that of a limit.

We want to know what happens to the output of a function as the 
inputs approach a specific value.

For polynomials the limit is easy. If f(x) = 3 x + 5, what is the limit of f(x) 
as x approaches 2? It would just be limx→ 2 f(x) = f(2) = 3 * 2 + 5 = 11.
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Limits
One of the most important concepts in calculus is that of a limit.

We want to know what happens to the output of a function as the inputs approach 
a specific value.

For polynomials the limit is easy. If f(x) = 3 x + 5, what is the limit of f(x) as x 
approaches 2? It would just be limx→ 2 f(x) = f(2) = 3 * 2 + 5.

Another way of writing x approaches 2 is to write x as 2 + h, and take the limit as h 
goes to 0. 

This would be 

limx→ 2 f(x) = limh→ 0 f(2+h) = limh→ 0 ???
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Limits
One of the most important concepts in calculus is that of a limit.

We want to know what happens to the output of a function as the inputs approach a specific value.

For polynomials the limit is easy. If f(x) = 3 x + 5, what is the limit of f(x) as x approaches 2? It would 
just be limx → 2 f(x) = f(2) = 3 * 2 + 5.

Another way of writing x approaches 2 is to write x as 2 + h, and take the limit as h goes to 0. 

This would be 

limx → 2 f(x) = limh→ 0 f(2+h) = limh→ 0 (3 * (2+h) + 5) = limh→ 0 (6 + 3 h + 5).

Now the limit of the sum is the sum of the limits, and we have

limh→ 0 (6 + 3 h + 5) = limh→ 0 6 + limh→ 0 3 h + limh→ 0 5 = 
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Limits
One of the most important concepts in calculus is that of a limit.

We want to know what happens to the output of a function as the inputs approach a specific value.

For polynomials the limit is easy. If f(x) = 3 x + 5, what is the limit of f(x) as x approaches 2? It would 
just be limx → 2 f(x) = f(2) = 3 * 2 + 5.

Another way of writing x approaches 2 is to write x as 2 + h, and take the limit as h goes to 0. 

This would be 

limx → 2 f(x) = limh→ 0 f(2+h) = limh→ 0 (3 * (2+h) + 5) = limh→ 0 (6 + 3 h + 5).

Now the limit of the sum is the sum of the limits, and we have

limh→ 0 (6 + 3 h + 5) = limh→ 0 6 + limh→ 0 3 h + limh→ 0 5 = 6 + 0 + 5 = 11.
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More on Limits

When you compute a limit, say the limit as x approaches 2, we can 
write x as 2 + h and you should think of h as a very small number that is 
NOT zero. 

We are talking about the limit as h approaches 0, but it is never 0.

Consider lim
𝑥→2

𝑥2 −4

𝑥 −2
. What will this equal?
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More on Limits

We are talking about the limit as h approaches 0, but it is never 0.

Consider lim
𝑥→2

𝑥2 −4

𝑥 −2
. We write x as 2 + h, and note from FOIL that 

(2+h)2 = 2*2 + 2 h + h 2 + h2 = 4 + 4h + h2. We must be careful as, at 2, have 0/0.

We have

lim
𝑥→2

𝑥2 −4

𝑥 −2
= lim
ℎ→0

???

???
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More on Limits

We are talking about the limit as h approaches 0, but it is never 0.

Consider lim
𝑥→2

𝑥2 −4

𝑥 −2
. We write x as 2 + h, and note from FOIL that 

(2+h)2 = 2 * 2 + 4 h + h2 = 4 + 4h + h2. We must be careful as, at 2, have 0/0.

We have

lim
𝑥→2

𝑥2 −4

𝑥 −2
= lim
ℎ→0

(2+ℎ)2 −4

(2+ℎ) −2
= lim
ℎ→0

4+4ℎ+ℎ2 −4

2+ℎ −2
= lim

ℎ→0

???

???
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More on Limits

We are talking about the limit as h approaches 0, but it is never 0.

Consider lim
𝑥→2

𝑥2 −4

𝑥 −2
. We write x as 2 + h, and note from FOIL that 

(2+h)2 = 2 * 2 + 4 h + h2 = 4 + 4h + h2. We must be careful as, at 2, have 0/0.

We have

lim
𝑥→2

𝑥2 −4

𝑥 −2
= lim
ℎ→0

(2+ℎ)2 −4

(2+ℎ) −2
= lim
ℎ→0

4+4ℎ+ℎ2 −4

2+ℎ −2
= lim

ℎ→0

4ℎ+ℎ2

ℎ
= lim
ℎ →0

(4 + ℎ) = 2.
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More on Limits

We have

lim
𝑥→2

𝑥2 −4

𝑥 −2
= lim
ℎ→0

(2+ℎ)2 −4

(2+ℎ) −2
= lim
ℎ→0

4+4ℎ+ℎ2 −4

2+ℎ −2
= lim

ℎ→0

4ℎ+ℎ2

ℎ
= lim
ℎ →0

(4 + ℎ) = 4.

Could have noticed x2 – 4 = (x-2)(x+2) and cancel the x-2:

lim
𝑥→2

𝑥2 −4

𝑥 −2
= lim
𝑥→2

(𝑥−2)(𝑥+2)

𝑥 −2
= lim
𝑥 →2

𝑥 + 2 = 2 + 2 = 4.
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Not all limits are easy to compute. In an earlier 
lecture came up with some formulas for π….
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PART III:
Introduction to Calculus: 
Differentiation



Average Speed

It is often a good idea to add units to a problem and tell a story. For 
example, if y = f(x), maybe x represents time and f(x) distance. 

Thus we might be plotting how far we are from home on a trip.

Let f(0) = 0 (we start at home) and end the trip at x=2, with f(2) = 110. 
What was our average speed? What was our fastest speed? Our 
slowest speed? Our most common speed?

Which of these questions can you answer?
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Average Speed

It is often a good idea to add units to a problem and tell a story. For 
example, if y = f(x), maybe x represents time and f(x) distance. 

Thus we might be plotting how far we are from home on a trip.

Let f(0) = 0 (we start at home) and end the trip at x=2, with f(2) = 110. 
What was our average speed? What was our fastest speed? Our 
slowest speed? Our most common speed?

Which of these questions can you answer? Just the first: it is 
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Average Speed

It is often a good idea to add units to a problem and tell a story. For example, 
if y = f(x), maybe x represents time and f(x) distance. 

Thus we might be plotting how far we are from home on a trip.

Let f(0) = 0 (we start at home) and end the trip at x=2, with f(2) = 110. What 
was our average speed? What was our fastest speed? Our slowest speed? 
Our most common speed?

Which of these questions can you answer? Just the first: it is 110/2 = 55 (we 
should have units – maybe time is in hours and distance in miles, so 55 mph).
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Computing Average Speed

It is easy to compute the average speed 
from time x=a to time x=b.

Let f(x) be our distance at time x. Then the 
average speed from x=a to x=b is just

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑏 𝑖𝑠
𝑓 𝑏 −𝑓(𝑎)

𝑏 −𝑎
.

This is the change in distance divided by 

the change in time.
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Average Speed for a Linear Function

If f(x) = c x + d (a linear function) then the average speed is constant!

For example, say f(x) = 3x + 5.

Let’s compute the average speed from x=a to x=b.

Change in distance = f(b) – f(a) = (3b+5) – (3a+5) = 3b + 5 - 3a - 5 = 3b – 3a.

Change in time = b – a.

Average speed from x=a to x=b

is 
3𝑏 −3𝑎

𝑏 −𝑎
=

3(𝑏 −𝑎)

𝑏 −𝑎
= 3.
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Average Speed for a Quadratic Function

A quadratic function is more interesting.

Say f(x) = x2 + 3x + 1, compute the average speed from x=a to x=b.

Change in distance is f(b) – f(a) = (b2 +3b+1) – (a2+3a+1) = b2+3b-a2-3a.

We can group: it equals b2-a2 + 3b-3a = (b-a)(b+a) + 3(b-a) = (b-a)(b+a+3).

Change in time is b-a.

Thus average speed from x=a to x=b is

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑏 =
(𝑏 − 𝑎)(𝑏 + 𝑎 + 3)

(𝑏 − 𝑎)
= 𝑏 + 𝑎 + 3.



Average Speed for a Quadratic Function

A quadratic function is more interesting.

Say f(x) = x2 + 3x + 1, compute the average speed from x=a to x=b.

Change in distance is f(b) – f(a) =



Average Speed for a Quadratic Function
A quadratic function is more interesting.

Say f(x) = x2 + 3x + 1, compute the average speed from x=a to x=b.

Change in distance is f(b) – f(a) = (b2 +3b+1) – (a2+3a+1) = b2+3b-a2-3a.

We can group: it equals



Average Speed for a Quadratic Function
A quadratic function is more interesting.

Say f(x) = x2 + 3x + 1, compute the average speed from x=a to x=b.

Change in distance is f(b) – f(a) = (b2 +3b+1) – (a2+3a+1) = b2+3b-a2-3a.

We can group: it equals (b2 - a2)+ (3b-3a) = (b-a)(b+a) + 3(b-a) = (b-a)(b+a+3).

Change in time is b-a.

Thus average speed from x=a to x=b is

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑏 =
(𝑏 − 𝑎)(𝑏 + 𝑎 + 3)

(𝑏 − 𝑎)
= 𝑏 + 𝑎 + 3.

What happens in the limit as b goes to a? What does this represent? What is 
this quantity equal to?



Average Speed for a Quadratic Function
A quadratic function is more interesting.

Say f(x) = x2 + 3x + 1, compute the average speed from x=a to x=b.

Change in distance is f(b) – f(a) = (b2 +3b+1) – (a2+3a+1) = b2+3b-a2-3a.

We can group: it equals b2-a2 + 3b-3a = (b-a)(b+a) + 3(b-a) = (b-a)(b+a+3).

Change in time is b-a.

Thus average speed from x=a to x=b is

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑏 =
(𝑏 − 𝑎)(𝑏 + 𝑎 + 3)

(𝑏 − 𝑎)
= 𝑏 + 𝑎 + 3.

What happens in the limit as b goes to a? What does this represent? 
What is this quantity equal to? INSTANTANEOUS SPEED! Is 2a+3.



Calculating Average Speeds for f(x) = x2+3x+1
We calculate the average speeds for f(x) from x=1 to x=b.

When we take b=1 the average speed calculation blows up. The plot on 
the right is with b = 1.5. Notice how the average speeds seem to 
converge to a number….
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Instantaneous Speed
The instantaneous speed at x=a is the limit, if it exists, of the average 
speed from x=a to x=b as b converges to a:

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑓 𝑥 𝑎𝑡 𝑥 = 𝑎 𝑖𝑠 lim
𝑏 →𝑎

𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
,

or equivalently

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑆𝑝𝑒𝑒𝑑 𝑎𝑡 𝑥 = 𝑎 𝑖𝑠 lim
ℎ →0

𝑓 𝑎+ℎ −𝑓(𝑎)

𝑎+ℎ−𝑎
= lim
ℎ →0

𝑓 𝑎+ℎ −𝑓(𝑎)

ℎ
.

Note this is a limit as h tends to 0, but h is never zero. Thus we do not 
have the undefined 0/0, we just have something arbitrarily close.

We denote this by f’(x), the prime indicates a NEW function related to 
the original function.

46



Instantaneous Speed for Linear Functions

Let’s take f(x) = 3x + 5 and calculate the instantaneous speed at x=a.

𝑓′(𝑎) = lim
ℎ →0

𝑓 𝑎 + ℎ − 𝑓(𝑎)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(3 𝑎+ℎ +5)−(3𝑎+5)

ℎ
=
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Instantaneous Speed for Linear Functions

Let’s take f(x) = 3x + 5 and calculate the instantaneous speed at x=a.

𝑓′(𝑎) = lim
ℎ →0

𝑓 𝑎 + ℎ − 𝑓(𝑎)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(3 𝑎+ℎ +5)−(3𝑎+5)

ℎ
= lim
ℎ →0

(3𝑎+3ℎ+5)−(3𝑎+5)

ℎ
=
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Instantaneous Speed for Linear Functions

Let’s take f(x) = 3x + 5 and calculate the instantaneous speed at x=a.

𝑓′(𝑎) = lim
ℎ →0

𝑓 𝑎 + ℎ − 𝑓(𝑎)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(3 𝑎+ℎ +5)−(3𝑎+5)

ℎ
= lim
ℎ →0

(3𝑎+3ℎ+5)−(3𝑎+5)

ℎ
= lim
ℎ →0

3ℎ

ℎ
.

What is lim
ℎ →0

3ℎ

ℎ
? It is
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Instantaneous Speed for Linear Functions

Let’s take f(x) = 3x + 5 and calculate the instantaneous speed at x=a.

𝑓′(𝑎) = lim
ℎ →0

𝑓 𝑎 + ℎ − 𝑓(𝑎)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(3 𝑎+ℎ +5)−(3𝑎+5)

ℎ
= lim
ℎ →0

(3𝑎+3ℎ+5)−(3𝑎+5)

ℎ
= lim
ℎ →0

3ℎ

ℎ
.

What is lim
ℎ →0

3ℎ

ℎ
? It is lim

ℎ →0
3, and this is just 3 as there is no h dependence.

So, for any a, if f(x) = 3x+5 we have f’(a) = 3. We often use the same variable 
for f’ and f, so we would write f’(x) = 3. Where is this 3 coming from?
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Instantaneous Speed for Linear Functions

Let’s take f(x) = 3x + 5 and calculate the instantaneous speed at x=a.

𝑓′(𝑎) = lim
ℎ →0

𝑓 𝑎 + ℎ − 𝑓(𝑎)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(3 𝑎+ℎ +5)−(3𝑎+5)

ℎ
= lim
ℎ →0

(3𝑎+3ℎ+5)−(3𝑎+5)

ℎ
= lim
ℎ →0

3ℎ

ℎ
.

What is lim
ℎ →0

3ℎ

ℎ
? It is lim

ℎ →0
3, and this is just 3 as there is no h dependence.

So, for any a, if f(x) = 3x+5 we have f’(a) = 3. We often use the same variable 
for f’ and f, so we would write f’(x) = 3. Where is this 3 coming from? The 
coefficient in front of the linear term.
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Instantaneous Speed for Linear Functions

More generally take f(x) = c x + d and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ

So 𝑓′(𝑎) = lim
ℎ →0

(𝑐 𝑥+ℎ +𝑑)−(𝑐𝑥+𝑑)

ℎ
= lim
ℎ →0

(𝑐𝑥+𝑐ℎ+𝑑)−(𝑐𝑥+𝑑)

ℎ
= lim
ℎ →0

𝑐ℎ

ℎ
.

What is lim
ℎ →0

𝑐ℎ

ℎ
? It is lim

ℎ →0
𝑐, and this is just c as there is no h dependence.

Thus if f(x) = cx + d then f’(x) = c.

What functions should we study next?

52



Instantaneous Speed for Quadratic Functions

Let’s take f(x) = 3x2+ 5x + 2 and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
Let’s look at the numerator:

f(x+h) =
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Instantaneous Speed for Quadratic Functions

Let’s take f(x) = 3x2+ 5x + 2 and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
Let’s look at the numerator:

f(x+h) = 3(x+h)2 + 5(x+h) + 2 = 

54



Instantaneous Speed for Quadratic Functions

Let’s take f(x) = 3x2+ 5x + 2 and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
Let’s look at the numerator:

f(x+h) = 3(x+h)2 + 5(x+h) + 2 = 3(1x2 + 2hx + 1h2) + 5(1x+1h) + 2

= 3x2 + 6hx + 3h2 + 5x + 5h + 2

f(x) = 3x2+ 5x + 2 

So f(x+h) – f(x) = 6hx + 3h2 + 5h.

Note the coefficients from Pascal’s Triangle…..
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Instantaneous Speed for Quadratic Functions

Let’s take f(x) = 3x2+ 5x + 2 and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
Let’s look at the numerator: f(x+h) – f(x) = 6hx + 3h2 + 5h.

Thus

𝑓′ 𝑥 = lim
ℎ →0

6ℎ𝑥+3ℎ2+5ℎ

ℎ
= lim

ℎ →0
(6𝑥 + 3ℎ + 5) =  6x + 5.

So how do we get from f(x) = 3x2+ 5x + 2  to f’(x) = 6x + 5?
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Instantaneous Speed for Quadratic Functions

Let’s take f(x) = 3x2+ 5x + 2 and calculate the instantaneous speed at x.

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
Let’s look at the numerator: f(x+h) – f(x) = 6hx + 3h2 + 5h.
Thus

𝑓′ 𝑥 = lim
ℎ →0

6ℎ𝑥+3ℎ2+5ℎ

ℎ
= lim

ℎ →0
(6𝑥 + 3ℎ + 5) =  6x + 5.

So how do we get from f(x) = 3x2+ 5x + 2  to f’(x) = 6x + 5?
The 6x could be 3 times 2, 3 is the coefficient of x2 and 2 is the power, and 
note that the power of x has decreased by 1.
Similarly the 5 could be 5 times 1, where 5 is the coefficient of x and 1 is the 
power, and note the power of x has decreased by 1. 
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Instantaneous Speed for Quadratic Functions

If we take f(x) = ax2 + bx + c and calculate the instantaneous speed at x,

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
,

we find f’(x) = 2ax + b.

We saw if f(x) = ax + b that f’(x) = a.

What would you guess for f(x) = ax3 + bx2 + cx + d?
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Instantaneous Speed for Quadratic Functions

If we take f(x) = ax2 + bx + c and calculate the instantaneous speed at x,

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
,

we find f’(x) = 2ax + b.

We saw if f(x) = ax + b that f’(x) = a.

What would you guess for f(x) = ax3 + bx2 + cx + d?

Answer: f’(x) = 3ax2 + 2bx + c.
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Instantaneous Speed for Polynomials

If we take f(x) = axn and calculate the instantaneous speed at x,

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
,

we find f’(x) = naxn-1.

What is the key ingredient to find f(x+h) = a(x+h)n?

Answer:
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Instantaneous Speed for Quadratic Functions
If we take f(x) = ax2 + bx + c and calculate the instantaneous speed at x,

𝑓′(𝑥) = lim
ℎ →0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
,

we find f’(x) = 2ax + b.

We saw if f(x) = ax + b that f’(x) = a.

What would you guess for f(x) = ax3 + bx2 + cx + d?

Answer: f’(x) = 3ax2 + 2bx + c.

Could now do a few polynomials to test your understanding….

61



Why do we care?
We can use the instantaneous speed to approximate 
the function.

We showed if f(x) = 3x2+ 5x + 2  then f’(x) = 6x + 5.

Consider the point x=2. Have f(2) = 12 + 10 + 2 = 24.

The instantaneous speed there is f’(2) = 12 + 5 = 17.

We can draw the tangent line at this point, using 
point-slope.

Point: (2, f(2)) = (2, 24) and slope m = f’(2) = 17.

Thus line is y – 24 = 17(x-2) or y = 17x – 10. 
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Why do we care?
We can use the instantaneous speed to approximate 
the function.

We showed if f(x) = 3x2+ 5x + 2  then f’(x) = 6x + 5.

Consider the point x=2. Have f(2) = 12 + 10 + 2 = 24.

The instantaneous speed there is f’(2) = 12 + 5 = 17.

We can draw the tangent line at this point, using 
point-slope.

Point: (2, f(2)) = (2, 24) and slope m = f’(2) = 17.

Thus line is y – 24 = 17(x-2) or y = 17x – 10. 
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Are you surprised the tangent line is a good approximation near x=2? Why?
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PART IV:
Divide and Conquer 
versus Newton’s Method
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Notation: [a, b] means the interval from a to b: it is all x such that a ≤ x ≤ b. Thus [0,1] is all real numbers from 0 to 1.
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Newton’s Method: Finding the next guess

Say have f(x) = x2 – 3

Want to solve f(x) = 0

Roots are
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Newton’s Method: Finding the next guess

Say have f(x) = x2 – 3

Want to solve f(x) = 0

Roots are 3 𝑎𝑛𝑑 − 3.

But what are these numbers?

How can we approximate them?

Idea is to replace the quadratic 
curve y = f(x) with a straight line.

Go from first guess to second, then 
shampoo math: lather, rinse, repeat.
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2.

If we plug in x=2 we get f(2) =
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2.

If we plug in x=2 we get f(2) = 1.

This is NOT zero, so we have NOT 
found the root.

What is f’(x)? It is f’(x) =
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2.

If we plug in x=2 we get f(2) = 1.

This is NOT zero, so we have NOT 
found the root.

What is f’(x)? It is f’(x) = 2x.

Thus what is the instantaneous 
speed at x=2? It is f’(2) =
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2.

If we plug in x=2 we get f(2) = 1.

This is NOT zero, so we have NOT 
found the root.

What is f’(x)? It is f’(x) = 2x .

Thus what is the instantaneous 
speed at x=2? It is f’(2) = 4.

Now we find the tangent line here.
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2, f(2) = 1, f’(2) = 4.

Use Point-Slope to get line.

Point: (2,f(2)) = (2,1)

Slope: m = f’(2) = 4.

Equation:
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2, f(2) = 1, f’(2) = 4.

Use Point-Slope to get line.

Point: (2,f(2)) = (2,1)

Slope: m = f’(2) = 4.

Equation: y – 1 = 4(x-2).

Simplify to y = 4x-7.

Where does this line hit the x-axis?
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

Initial guess x0 = 2, f(2) = 1, f’(2) = 4.

Use Point-Slope to get line.

Point: (2,f(2)) = (2,1)

Slope: m = f’(2) = 4.

Equation: y – 1 = 4(x-2).

Simplify to y = 4x-7.

Where does this line hit the x-axis?

0 = 4x-7 so 4x = 7 so x = 7/4 = 1.75.
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

We had x0 = 2 our initial guess.

New guess for root is x1 = 7/4 = 1.75.

Not terrible. 

Try again. Use x1 = 7/4, and find a 
NEW tangent line….
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 
3 𝑎𝑛𝑑 − 3.

New guess for root is x1 = 7/4 = 1.75.

Point: (7/4, f(7/4)) = (7/4, 49/16-3)

Slope: m = f’(7/4) = 7/2 as f’(x) = 2x.

Simplify:

Point is (7/4, 1/16), slope is 7/2.

As y-coordinate almost 0 see CLOSE 
to the root….
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 3 𝑎𝑛𝑑 − 3.

New guess for root is x1 = 7/4 = 1.75.

Point: (7/4, f(7/4)) = (7/4, 1/16)

Slope: m = f’(7/4) = 7/2 as f’(x) = 2x.

Line: y – 1/16 = (7/2)(x – 7/4).

Where does this hit the x-axis? 
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 3 𝑎𝑛𝑑 − 3.

New guess for root is x1 = 7/4 = 1.75.

Point: (7/4, f(7/4)) = (7/4, 1/16)

Slope: m = f’(7/4) = 7/2 as f’(x) = 2x.

Line: y – 1/16 = (7/2)(x – 7/4).

Where does this hit the x-axis? At y = 0.

Get -1/16 = (7/2)x – 49/8
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Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 3 𝑎𝑛𝑑 − 3.

New guess for root is x1 = 7/4 = 1.75.

Point: (7/4, f(7/4)) = (7/4, 1/16)

Slope: m = f’(7/4) = 7/2 as f’(x) = 2x.

Line: y – 1/16 = (7/2)(x – 7/4).

Where does this hit the x-axis? At y = 0.

Get -1/16 = (7/2)x – 49/8

So (7/2)x = 97/16, or x = 97/56

So next guess x2 is 97/56 or about 1.7321428571.

87



Newton’s Method: Finding the next guess
Solve f(x) = x2 – 3 = 0, roots are 3 𝑎𝑛𝑑 − 3.

New guess for root is x2 = 97/56 or about 
1.7321428571.

We can keep doing this.

We get a sequence of points x1, x2, x3, ….

Do these converge to 3? Looks like it!

Doing some algebra we can come up with

an explicit formula for xn+1 in terms of xn.
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https://www.youtube.com/watch?v=ZsFixqGFNRc

https://www.youtube.com/watch?v=ZsFixqGFNRc
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96https://www.youtube.com/watch?v=ZsFixqGFNRc
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Mandelbrot Links: Especially GOOD LINKS

https://www.youtube.com/watch?v=0jGaio87u3A

https://www.youtube.com/watch?v=9j2yV1nLCEI

https://www.youtube.com/watch?v=ZsFixqGFNRc

https://www.youtube.com/watch?v=PD2XgQOyCCk

https://www.youtube.com/watch?v=vfteiiTfE0c


